
Math 115A, Lecture 2
Linear Algebra

Midterm 2

Instructions: You have 50 minutes to complete the exam. There are five problems, worth a
total of fifty points. You may not use any books or notes. Partial credit will be given for progress
toward correct proofs.

Write your solutions in the space below the questions. If you need more space use the
back of the page. Do not forget to write your name in the space below.

Name:

Question Points Score

1 10

2 10

3 10

4 10

5 10

Total: 50



Problem 1.
Let T : V → W be a linear transformation between real vector spaces V and W .

(a) [5pts.] Define R(T ) and N(T ).

Solution: The range R(T ) is the subspace {T (v) : v ∈ V } ⊂ W . The null
space N(T ) is the subspace {v ∈ V : T (v) = 0}.

(b) [5pts.] Prove that T is one-to-one if and only if N(T ) = {0}.

Solution: For clarity, let 0V be the identity element in V and 0W be the identity
element in W . First, suppose that T is one-to-one. Then if T (v) = 0W = T (0V ),
we must have v = 0V . Ergo N(T ) = {0V }. Now, conversely, suppose that
N(T ) = {0V }. Let v1, v2 be two vectors in V such that T (v1) = T (v2). Then
by linearity, T (v1 − v2) = T (v1) − T (v2) = 0W , so v1 − v2 ∈ N(T ). But this
implies that v1 − v2 =)V , or in other words v1 = v2. So we have proved that
T (v1) = T (v2) only if v1 = v2, we see that T is one-to-one.

Problem 2.
Consider the linear transformation

T : P (R)→ P (R)

f(x) 7→ f ′(x) + f(0)

(a) [3pts.] Is T onto?

Solution: Yes. It suffices to show that every element of the basis {1, x, x2, · · · }
for P (R) is in R(T ). But we observe that xn = T ( 1

n+1
xn) for all n ≥ 0. Ergo T

is onto.

(b) [3pts.] Is T an isomorphism?

Solution: No, T is not one-to-one. Notice that T (x − 1) = 1 − 1 = 0. (No-
tice that the dimension theorem does not apply here, since P (R) is infinite
dimensional.

(c) [4pts.] What are the eigenvectors of T?

Solution: Notice that if v = c0+c1x+· · ·+cnxn ∈ P (R), then T (c0+c1x+· · ·+
cnx

n) = (c0 + c1) + 2c2x+ · · ·+ ncnx
n−1. We see that the constant polynomials

are eigenvectors of T with eigenvalue λ = 1, and the polynomials f(x) = c− cx
are eigenvectors with eigenvalue λ = 0.



Problem 3.
Let T be the linear transformation of the plane given by rotating π

4
radians counter-

clockwise and then reflecting across the x-axis.

(a) [5pts.] Find the matrix representing [T ]β representing T with respect to the stan-
dard basis β for R2.

Solution: Rotation by π
4

maps (1, 0) to ( 1√
2
, 1√

2
) and (0, 1) to (− 1√

2
, 1√

2
),

whereas reflection across the x-axis maps (1, 0) to itself and (0, 1) to (0,−1).
Therefore we conclude that

[T ]β =

(
1 0
0 −1

)( 1√
2
− 1√

2
1√
2

1√
2

)
=

(
1√
2
− 1√

2

− 1√
2
− 1√

2

)

(b) [5pts.] Find a basis β′ for R2 with respect to which T is represented by a diagonal
matrix.

Solution: We see that the characteristic polynomial of [T ]β is 1
2
(t2 − 1), so

the eigenvalues of T are ±1. Solving [T ]β[v] = ±v shows that β′ = {(1, 1 −√
2), (1, 1 +

√
2)} is a basis for R2 consisting of eigenvectors for T . With respect

to this basis, we have

[T ]β′ =

(
1 0
0 −1

)

Problem 4.
Let V be a finite-dimensional vector spaces, and let L(V ) be the vector space of linear
transformations from V to itself.

(a) [5pts.] Consider the subset Z of L(V ) consisting of the invertible linear transfor-
mations from V to itself. Is Z a subspace of L(V )?

Solution: No. For the easiest reason, we see that the zero transformation T0,
which is the identity element of L(V ) is not in Z. More generally, Z is never
closed under addition.

(b) [5pts.] Show that β = {T1, · · · , Tn} is a basis for L(V ) and S ∈ L(V ) is invertible,
then S(β) = {ST1, · · · , STn} is also a basis for L(V,W ). [Hint: You will want to
use the fact that S−1 exists.]

Solution: We must show that {ST1, · · · , STn} is linearly independent and gen-
erates V . First, suppose there is some linear relationship a1ST1 + · · ·+anSTn =
0. Then we have S(aT1 + · · · + aTn) = T0, since composition distributes over



addition and scalar multiplication. Applying S−1 to both sides of this equal-
ity gives aT1 + · · · + anTn = S−1T0 = T0, so since β is linearly independent,
a1 = · · · = an = 0. We conclude that S(β) is linearly independent.

Next, we claim that S(β) generates L(V,W ). For let U ∈ L(V,W ). Then
S−1U = a1T1 + · · · + anTn for some a1, a2, · · · , an ∈ R, so applying S to both
sides of this equality gives U = a1ST1 + · · · + anSTn. We conclude that S(β)
generates L(V,W ).

Problem 5.
Let T : V → V be a linear transformation.

(a) [5pts.] Prove that if λ is an eigenvalue of T , then λn is an eigenvalue of T n.

Solution: Suppose that v ∈ V is an eigenvector of T with eigenvalue λ. Then
T (v) = λv. We claim that T n(v) = λn(v). We will show this inductively. The
base case n = 1 is true by assumption. For the inductive step, if we assume
that T n−1(v) = λn−1v, then T n(v) = T (T n−1(v)) = T (λn−1(v)) = λn−1T (v) =
λn−1(λ(v)) = λnv.

(b) [5pts.] Suppose that λ > 0 is an eigenvalue of T n. Is λ
1
n necessarily an eigenvalue

of T? [Hint: Think about rotations.]

Solution: No. Consider the rotation Tπ
2

by π
2

radians in the plane, which we
observed in class has no eigenvalues. The fourth power T 4

π
2

= T2π = IR2 . But of

course every nonzero vector in R2 is an eigenvector of the identity transformation
with eigenvalue λ = 1.


